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Abstract. The overpopulated isoscalar tensor states are sifted using Schwinger–type mass relations. Two
solutions are found: one where the glueball is the fJ(2220), and one where the glueball is more distributed,
with f2(1820) having the largest component. The f2(1565) and fJ(1710) cannot be accommodated as
glueball–(hybrid) meson mixtures in the absense of significant coupling to decay channels. f ′

2(1525) → ππ
is in agreement with experiment. The fJ(2220) decays neither flavour democratically nor is narrow.

1 Introduction

The amount of isoscalar tensor states claimed to exist ex-
perimentally [1] has reached a point where näıve interpre-
tation of these states becomes perilous. This is particularly
distressing in light of the fact that the tensor glueball, a
degree of freedom beyond conventional mesons, is the sec-
ond lowest glueball predicted by lattice QCD [2–4] and
should be manifested in this multiplicity of states. There is
a need to bring some order by sorting out well understood
states. What is sorely needed is a model–independent the-
oretical tool.

The need for model–independence of the theory is es-
pecially prevalent in light of the fact that the recently
claimed a2(1660) [5–8] has a mass which confounds tra-
ditional, and often reliable, potential models of radially
excited P–wave mesons. For example, the difference be-
tween the first radially excited and ground state isovector
JPC = 2++ (tensor) states were predicted to be 510 MeV
in a relativized quark model [9], while the experimental
value is ∼ 340 MeV.

In this paper we present a mass–matrix analysis of
considerable, although not total, generality. Schwinger–
type mass formulae [10] are derived. It is assumed that
the mesons and glueball mix only via meson–glueball cou-
pling, with no direct meson–meson coupling. At any stage
of the analysis we restrict ourselves to a finite number of
mesons (with one glueball) and mixing with hypothetical
four–quark states is not taken into account.

The term isoscalar “mesons” shall refer to the partners
of the light quark isovector mesons, each of which has an ss̄
partner. The isovector mesons will be given by labels like
P–wave, F–wave or hybrid meson, indicating the dominant
component in a quark model interpretation of the state.
However, the mass matrix analysis does not assume the
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P–wave, F–wave or hybrid meson nature of a state, nor
that it is an unmixed quark model state.

2 Masses

The tensor sector has a few salient features which simplify
the analysis. The first excited lattice QCD tensor glueball
is 1.85±0.20 times the mass of the scalar glueball [2], and
its effect on the experimental spectrum can hence safely
be neglected. This means that we can restrict consider-
ation to the low–lying mesons and one primitive (bare)
glueball. The mass of the glueball is reliably estimated by
using M(2++)/M(0++) = 1.39 ± 0.04 [3] or 1.42 ± 0.06
[2], in combination with the average lattice QCD value
M(0++) ≈ 1.6 GeV [11], to be around 2.2 GeV [4]. It is
instructive to obtain the lower limit on the tensor glueball
mass allowed by lattice QCD. With 1.5 GeV the lower
limit for the scalar glueball mass, one obtains a tensor
glueball mass >∼ 1.35 M(0++) >∼ 2.0 GeV. This limit will
be employed later on.

The isovector tensor mesons should act as beacons for
the mass scales of various nonets. Unfortunately, only the
a2(1320), which we will take to fix the mass of the primi-
tive nn̄ ground state P–wave state, 1P, is well established
[1]. There is recent evidence for a2(1660) at 1660±40 MeV
or 1660± 15 MeV [5], for an a2(1600− 1700) [6], evidence
at ARGUS for a mainly 2++ state at 1.7 GeV [7] and for
an a2 at 1752 ± 21 ± 4 MeV [8]. The a2(1660) is taken
to fix the mass of the primitive nn̄ first radially excited
P–wave state, 2P. Additional evidence for the presence of
a 2P nonet is provided by its 1++ partners. The a1(1700)
was claimed by BNL [12] and a similar signal was seen at
VES [6,13]. Recently, weak evidence for f1(∼ 1700) was
reported [14].

There is also some recent evidence for isovector tensor
states at 2060±20 MeV and 1990+15

−30 MeV [15], signalling
the 3P and 1F nonets. Except for these isovector tensor
states, the reasons for expecting the 3P and 1F nonets in
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a similar mass region are as follows. There are f0(2010),
f0(2060) [1], and fJ(2100), with J most likely 0, at 2115±
15 ± 15 MeV [5]. There are recent indications of an a0 at
2025 ± 30 MeV [15]. These J = 0 states signal P–wave
mesons, since neither the ground state nor the excited
scalar glueball is expected in this mass region [3]. An a1 at
2100 ± 20 MeV also indicates 3P. Given the experimental
mass splitting between the 2P and 1P nonets noted earlier
one also expects the 3P level in this mass region. We shall
take the primitive nn̄ 3P level to be at 2.05 GeV. The 1F
nonet is signposted by the a4(2050), f4(2050), K4(2045),
the recently reported a3 at 1860±20 MeV [6] or 2070±20
MeV [15] and f3 at 2000± 40 MeV [14] or 1950± 15 MeV
[15]. There are recent indications from VES [6] that the
mass of the a4(2050) is 1944 ± 8 ± 50 or 1950 ± 20 MeV.
We place the primitive nn̄ 1F state at 1.94 GeV and the
primitive ss̄ state higher by twice the difference between
the K4(2045) and VES’ a4(2050) masses, i.e. at 2.15 GeV.
Variation of these masses is discussed in Appendix A.

There is some evidence for an isovector tensor state at
2265 ± 20 MeV [15], signalling the 2F or 4P nonets. The
presence of both nonets is indicated by an f1 at 2340 ±
40 MeV [14], an a1 at 2340 ± 40 MeV [15], and an f0
at 2335 ± 25 MeV [15], which can be 4P but not 2F; or
f4(2300), K3(2320) [1], an a4 at 2300 ± 20 MeV [15], an
f3 at 2280±30 MeV [14], and a3 at 2310±40 MeV, which
can be 2F but not 4P 1.

It is clear that there is no evidence for overpopulation
of levels for isovector tensors, implying that there is no
need to introduce a hybrid meson level2 up to ∼ 2.3 GeV.
For isodoublet tensors, there is in fact an underpopulation:
only the well–established K∗

2 (1430) from the 1P nonet,
and the marginal K∗

2 (1980) are known [1].
To the contrary, there are 13 isoscalar tensor mesons

up to ∼ 2.3 GeV listed by the Particle Data Group, with
6 well–established3 [1]. One expects a glueball, and the
1P, 2P, 3P and 1F nonets in this mass region, yielding 9
states, and possibly nn̄ 4P and 2F in addition, giving 11
states. There is hence an overpopulation of experimental
isoscalar tensors, albeit not for the well–established ones.

Since the 1P, 2P, 3P and 1F nonets are expected be-
low ∼ 2.3 GeV, our analysis can safely be restricted to a

1 f4(2300) and a4 may be members of the 1H nonet, although
the nonet appears to be more high–lying, as signalled by the
a6(2450) and f6(2510) [1].

2 The possibility of a tensor hybrid meson in the mass range
up to ∼ 2.3 GeV cannot be excluded theoretically. Beyond the
early MIT bag model estimates, constituent gluon models have
estimated a tensor hybrid mass, most recently at 1.6−1.8 GeV
[40]. Lattice QCD splittings of hybrid levels indicate that at
least for bb̄ hybrids, the tensor hybrid is degenerate with the
lightest hybrids within errors [41]. However, adiabatic lattice
QCD and flux–tube models do not find tensors on the low-
est hybrid adiabatic surface. Also, tensor mesons are associ-
ated with 0++ hybrids in bag, constituent gluon and flux–tube
models and adiabatic lattice QCD. There is no indication of
an overabundance of isovector scalar states.

3 Taking both fJ(1710) and fJ(2220) to have 2++ compo-
nents.

9 × 9 mass matrix. There is the possibility of the 4P and
2F mesons contaminating results at the upper end of our
simulation, at ∼ 2.3 GeV, which is also investigated.

3 5 × 5 mass matrices

The mixing of a glueball and n pairs of isoscalar mesons
is described by the following mass matrix, motivated in
Appendix B, which is diagonalized by the masses of (2n+
1) physical states:




G g1 g1
√

2 g2 g2
√

2 · · · gn gn

√
2

g1 S1 0 0 0 · · · 0 0
g1

√
2 0 N1 0 0 · · · 0 0

g2 0 0 S2 0 · · · 0 0
g2

√
2 0 0 0 N2 · · · 0 0

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
gn 0 0 0 0 · · · Sn 0

gn

√
2 0 0 0 0 · · · 0 Nn




(1)

=⇒ diag (h1, h2, h3 . . . , h2n, h2n+1).

G and S,N stand for the mass of the primitive glueball,
and ss̄ and nn̄ ≡ (uū + dd̄)/

√
2 mesons, respectively, the

subscript indicating the number of the nonet the state
belongs to. hi stand for the masses of the physical states. gi

are the glueball–meson couplings that have dimensionality
(mass), in accord with the dimensionality of the diagonal
entries of (1). In what follows, we restrict ourselves to the
case where the quantities in (1) are real numbers4.

Applying the techniques of [10], one can obtain 2n
pairs of relations for the coupling in terms of the prim-
itive and physical masses:

gi =

√√√√−
∏2n+1

j=1 (Si − hj)∏n
j=1(Si −Nj)

∏n
j=1 j 6=i(Si − Sj)

, i = 1, 2 . . . n,

gi =

√√√√−
∏2n+1

j=1 (Ni − hj)
2
∏n

j=1(Ni − Sj)
∏n

j=1 j 6=i(Ni −Nj)
, (2)

Each pair of these relations represents a Schwinger–type
mass formula. Hence, for (2n+ 1) × (2n+ 1) mass matrix
(1) one has n Schwinger mass relations. These n formulae,
together with the trace condition for the mass matrix (1),

G+ S1 +N1 + S2 +N2 + . . .+ Sn +Nn = h1 + h2 + h3

+ . . .+ h2n + h2n+1, (3)

constitute n + 1 mass relations for the mixing of a glue-
ball and n meson nonets. It is clear that solving such a

4 gi and −gi gives the same eigenvalues, so we always choose
gi non–negative.
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system of n+ 1 mass relations can lead to unphysical so-
lutions, e.g., solutions that correspond to all or some of
the couplings being imaginary numbers. Obviously, such
solutions will not correspond to the initial mass matrix
(1), and hence should be rejected.

It is difficult to find all the solutions of the Schwinger
equations for a 9 × 9 mass matrix of the form (1) numeri-
cally. Hence we take the approach to solve the Schwinger
equations for a 5×5 mass sub–matrix, which involves only
the primitive and physical masses, and then reconstruct
the couplings. As all 5×5 sub–matrices are found, we then
obtain the corresponding 9 × 9 mass matrix.

In this analysis, we pursue the following strategy:
(i) We start with the 5× 5 sub–matrix for the glueball

and 2P and 1F nonets, by fixing the masses of primitive nn̄
for 2P, and nn̄ and ss̄ for 1F, and obtain the primitive 2P
ss̄mass. We then consider another 5×5 sub–matrix for the
glueball and 2P and 3P nonets, with fixed: both nn̄ and
ss̄ masses of the 2P nonet from the previous simulation,
and the primitive nn̄ mass for the 3P nonet. In both 5×5
sub–matrix simulations we obtain all the solutions of the
Schwinger equations (2).

(ii) Input: For the two 5 × 5 sub–matrix simulations,
we fix the following values of the primitive masses (in
GeV): N = 1.66 for 2P, N = 1.94, S = 2.15 for 1F
and N = 2.05 for 3P. We also take one of the physi-
cal states to have a mass in agreement with one of the
glueball candidates (which we review in the next section),
and the other three physical states to have masses in
agreement with three states among f2(1565), f2(1640),
fJ(1710), f2(1810), f2(1950), f2(2010), f2(2150),
fJ(2220), f2(2300) and f2(2340), excluding the state al-
ready chosen for the physical glueball. Output: We then
solve the system of three equations (two Schwinger for-
mulae and the trace condition) for three unknowns: G, S
for 2P and the remaining fifth physical mass for the first
5 × 5 simulation, and G, S for 3P and the remaining fifth
physical mass for the second 5 × 5 simulation. We require
that the fifth physical mass from each 5 × 5 simulation is
among the physical states mentioned above.

(iii) Since we take the f2(1275) and f
′
2(1525) as the

established ground state 1P tensor mesons, we incorporate
them later in the full 9 × 9 mass matrix analysis.

(iv) We discard the possibility that f2(1420) exists.
Although claimed by a number of old experiments in a
variety of production processes, recent experiments do not
confirm its existence. This is most vividly illustrated by its
observation in (mostly) double Pomeron exchange in pp →
pf (π+π−)ps at

√
s = 63 GeV [4,16]. Recent examination

of the same reaction does not see any evidence for f2(1420)
[17].

We admit the following criteria for holding physical
solutions and separating out non–physical ones:

(i) The output fifth physical mass lies within a mass
range allowed by data for one of the experimental candi-
dates.

(ii) The mass of the primitive glueball satisfies G ≥ 2
GeV.

(iii) In all the cases when a primitive ss̄ mass is to
be obtained, it is higher than the corresponding nn̄ mass,
and the ss̄−nn̄ mass splitting is consistent with the quark
model motivated estimate 200 ± 50 MeV [11].

4 9 × 9 mass matrices

Various physical states have been suggested as tensor glue-
ball candidates in the literature:

fJ(2220): The fJ(2220) is strongly produced in J/ψ
radiative decay, and not seen in γγ collisions, suggesting
glueball character if J = 2 [4,18]. The flavour democratic
decay pattern and small total width of fJ(2220) is also
cited as evidence for its glueball nature [19].

f2(2150): This was suggested in [20].
The nearness of the mass of fJ(2220) and f2(2150) to

the tensor glueball mass predicted by lattice QCD is often
cited as evidence for their glueball nature [4].

f2(1950): The pT dependence of the pp central produc-
tion of f2(1950) is consistent with its glueball character
according the Close–Kirk glueball filter [4,21]. However,
it was admitted that the structure seen in central produc-
tion may represent more than one resonance [21].

fJ(1710): The glueball nature of this state is suggested
by its pT dependence in central production [21] and its
production in “glue–rich” pp̄ annihilation [18], although
its strong production in J/ψ radiative decay is consistent
with expectations for qq̄ if J=2 [18].

For each 5 × 5 case, we take one of the above four
glueball candidates to be one of the five physical states.

Having completed the double 5×5 sub–matrix analysis
and fixing N = 1.318 for 1P [1], the full 9×9 mass matrix
is now recovered by solving the Schwinger equations (2)
exactly, using the solutions obtained for the two 5×5 ma-
trices as initial values for the search routine. We therefore
do not obtain all of the 9 × 9 mass matrix solutions, but
only the ones similar to the ones found formerly with the
two 5 × 5 matrices.

There are two different solutions, which are almost
identical with respect to the physical masses. Particularly,
the primitive glueball masses are consistent with 2.0− 2.1
GeV predicted by recent models [4,22] and the lattice
QCD predictions mentioned earlier. The couplings are in
the range 30−120 MeV for the various nonets. These val-
ues are similar to 43 ± 31 MeV predicted in lattice QCD
for ground state isoscalar scalars [23]. We find that the
physical masses are insensitive to changes in the input,
but that the valence content is more sensitive: especially
for states at similar masses to where the parameters are
changed, and for small valence components (see Appendix
A).

(i) For the first solution, the fJ(2220) turns out to
be the physical glueball. For this solution, the initial 9 ×
9 mass matrix is (shown are the values of the primitive
masses and couplings rounded to the second decimal digit;
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all values are given in GeV)




2.10 0.03 0.03
√

2 0.04 0.04
√

2 0.09 0.09
√

2 0.12 0.12
√

2
0.03 2.28 0 0 0 0 0 0 0

0.03
√

2 0 2.05 0 0 0 0 0 0
0.04 0 0 2.15 0 0 0 0 0

0.04
√

2 0 0 0 1.94 0 0 0 0
0.09 0 0 0 0 1.84 0 0 0

0.09
√

2 0 0 0 0 0 1.66 0 0
0.12 0 0 0 0 0 0 1.55 0

0.12
√

2 0 0 0 0 0 0 0 1.318



,

(4)
the physical masses are

2.29, 2.23, 2.14, 2.04, 1.93, 1.82, 1.64, 1.52, 1.28,
(5)

and the valence content of the physical states is




0.38 0.91 0.07 0.11 0.06 0.08 0.08 0.06 0.07
0.73 −0.42 0.18 0.38 0.14 0.17 0.17 0.13 0.14

−0.32 0.07 −0.16 0.92 −0.09 −0.10 −0.08 −0.07 −0.07
−0.18 0.02 0.97 0.07 −0.10 −0.08 −0.06 −0.05 −0.04
−0.15 0.01 0.05 0.03 0.97 −0.14 −0.07 −0.05 −0.04
−0.19 0.01 0.04 0.02 0.10 0.96 −0.15 −0.09 −0.07
−0.18 0.01 0.02 0.01 0.03 0.08 0.94 −0.25 −0.10
−0.20 0.01 0.02 0.01 0.03 0.06 0.19 0.94 −0.17
−0.23 0.01 0.01 0.01 0.02 0.04 0.08 0.10 0.96



.

(6)
(ii) For the second solution, the the physical glueball is

distributed, with f2(1810) containing the largest compo-
nent. Although the highest mass state appears to have the
largest glueball component, we shall see in Sect. 6 that the
content changes as more high mass states are introduced.
For this solution, the initial 9 × 9 mass matrix is




2.05 0.10 0.10
√

2 0.11 0.11
√

2 0.08 0.08
√

2 0.11 0.11
√

2
0.10 2.27 0 0 0 0 0 0 0

0.10
√

2 0 2.05 0 0 0 0 0 0
0.11 0 0 2.15 0 0 0 0 0

0.11
√

2 0 0 0 1.94 0 0 0 0
0.08 0 0 0 0 1.95 0 0 0

0.08
√

2 0 0 0 0 0 1.66 0 0
0.11 0 0 0 0 0 0 1.55 0

0.11
√

2 0 0 0 0 0 0 0 1.318



,

(7)
the physical masses are

2.38, 2.23, 2.12, 2.01, 1.95, 1.82, 1.63, 1.52, 1.28,
(8)

and the valence content of the physical states is


0.64 0.58 0.27 0.31 0.23 0.12 0.10 0.08 0.09
0.31 −0.79 0.24 0.42 0.17 0.09 0.06 0.05 0.05

−0.22 0.15 −0.45 0.82 −0.19 −0.11 −0.06 −0.04 −0.04
−0.22 0.08 0.75 0.17 −0.50 −0.30 −0.07 −0.05 −0.05
−0.02 0.01 0.03 0.01 −0.47 0.88 −0.01 −0.01 −0.01
−0.48 0.11 0.30 0.16 0.63 0.30 −0.33 −0.19 −0.15
−0.22 0.04 0.08 0.05 0.11 0.06 0.91 −0.30 −0.11
−0.25 0.03 0.07 0.04 0.09 0.07 0.20 0.92 −0.19
−0.25 0.03 0.05 0.03 0.06 0.03 0.07 0.10 0.96



.

(9)

5 Discussion of mass matrix results

Both solutions have the following similarities:
(i) The physical states are f2(1270), f

′
2(1525), f2(1640),

f2(1810), f2(1950), f2(2010), f2(2150), fJ(2220) and ei-
ther the f2(2300)/f2(2340) or f2(2340) as solutions in the
first and second cases, respectively5. We never found the
f2(1565) and fJ(1710). The reason why f2(1810) is found
instead of these resonances is because the primitive 2P ss̄
is required to 250±50 MeV from the input a2(1660) mass.

(ii) The valence content has almost entirely the same
signs between the various components, the only exception
being different signs for the two dominant meson compo-
nents in f2(1950).

(iii) The physical mesons have a substantial glueball
content, contrary to näıve expectations, with the excep-
tion of f2(1950) in solution 2. It has been argued phe-
nomenologically that experimental data demand physical
mesons with appreciable glueball content [24]. This would,
for example, explain why f2(2010), f2(2300) and f2(2340)
were observed in the OZI forbidden process πp → φφn,
and would suggest that several tensor mesons should be
produced in glue–rich processes. For example, f2(1270)
was observed in gluon fusion [25]. The small glueball com-
ponent in f2(1950) in solution 2 is apparently in contra-
diction with the Close–Kirk filter.

(iv) The f2(1270), f
′
2(1525) and f2(1640) are composed

of more than 90% of the expected primitive state.
(v) For the 1P nonet, S + N = 1.55 + 1.318 = 2.868

GeV is consistent with 2M(K∗
2 ) = 2.858 ± 0.01 GeV [1].

The solutions differ as follows:
(i) In the first solution all physical mesons have one

component which has a valence content of larger than
90%, i.e. the state is dominantly a specific primitive state.
For this solution, valence components of physical mesons
greater than 10% only occur within two primitive states
of the dominant primitive state. The second solution does
not behave in this way.

5 Within experimental mass uncertainty [1], we cannot dis-
tinguish between f

′
2(1525) or f2(1565). In Sect. 7.1, we show

that f
′
2(1525) → ππ is consistent with experiment if it is taken

to have the valence content of the second state, which we thus
identify as f

′
2(1525).
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(ii) For the first solution, the physical glueball has sub-
stantial valence content in all the meson states it couples
to, contrary to the second solution.

(iii) In the first solution the couplings decrease with
increased radial excitation (from 1P to 3P), as one would
näıvely expect [26]; while for the second solution the cou-
plings remain approximately the same, as expected from
Regge theory [27]. An advantage of our method is that all
information on couplings are predictions, using (2), once
the masses are known.

(iv) The first solution has the slight disadvantage that
the primitive ss̄–nn̄ mass splitting ∼ 180 MeV in the 2P
nonet is a little small, versus an agreeable ∼ 290 MeV for
the second solution.

(v) For the second solution, it is seen in (9) that both
the f2(1950) and f2(2150) have large nn̄ and ss̄ compo-
nents, and neither of them are in destructive interference.
Hence, both of these states will have many different decay
modes, which is in excellent agreement with data (these
different decay modes are amongst the main reasons for
each of these states to be chosen as the tensor glueball
candidate by different groups). Although this feature is
absent for these states for the first solution (4)-(6), where
f2(1950) is mostly nn̄ and f2(2150) mostly ss̄, many of the
observed decay modes arise from connected decay of both
uū and ss̄ components, so that this avenue to distinguish
between solutions may not be definitive.

5.1 f2(1565) and fJ(1710)

It is possible that f2(1565) and f2(1640) are aspects of the
same state, which would remove one extra state. We have
nevertheless attempted to find solutions where f2(1565)
and fJ(1710) are physical states in addition to the states
(5),(8), by adding another nonet to form an 11×11 matrix.
Of course, one can insert primitive states at these masses
with an unrealistically small glueball–meson coupling and
an unrealistic ss̄–uū mass splitting of 150 MeV and obtain
a solution. However, no realistic solutions are found.

We have neglected the mixing of mesons with decay
channels thoughout, since it is believed to produce only
tiny mass shifts [28]. However, scenarios where there is
large coupling to decay channels, e.g. ωω, ρρ, K∗K∗ and
φφ, have been advanced by various authors.

f2(1565) decays to ρρ and ωω and has an abnormally
small branching ratio to ππ and ηη [1]. This, together with
the nearness of f2(1565) to the ρρ and ωω thresholds has
lead to suggestions that f2(1565) is a ρρ molecule or a
baryonium state [29]. Also, f2(1565) may be the isoscalar
partner of the isotensor tensor enhancement X(1600) [1],
which, if it is resonant, must be a degree of freedom beyond
glueballs and (hybrid) mesons.

A more modest suggestion is that the mass of the 2P
nn̄ state found in our formalism is shifted downward by
the ρρ and ωω thresholds, which the 3P0 model predicts
it to couple strongly to [30].

fJ(1710) has been suggested as a K∗K∗ molecule [31].
However, it is not well established that a J = 2 component
exists. BES separated both J = 0 and J = 2 components,

with the tensor state having mass 1697 MeV and a width
of 176 MeV [32]. However, recent evidence support only
the J = 0 component [17,33].

6 13 × 13 mass matrix

Once the 9 × 9 mass matrix is fixed, one can easily add
extra meson nonets to it. We add the primitive nn̄ and ss̄
masses of the 2F nonet at 2.3 and 2.5 GeV, respectively, to
the mass matrices (4),(7). Similarly, the primitive states
of the 4P nonet are added at 2.35 and 2.55 GeV, to yield
a 13 × 13 mass matrix. The physical states in (5),(8) are
required to be among the physical states, i.e. both f2(2300)
and f2(2340).

The result is a 13 × 13 “counterpart” to each 9 × 9
matrix (6),(9), called solutions 1a and 2a. The primitive
states in common have the same couplings and primitive
masses, and similar valence content (with the same signs).
The valence content of a given primitive state tends to
decrease from the 9 × 9 counterpart, since the physical
state is spread over more primitive states.

Remarkably, the ratio of valence contents of the 13×13
solutions and their 9 × 9 counterparts remain extremely
similar (∼ 1%), except for the components in the 9×9 ma-
trix which has similar mass to the new components being
added. This means that for low–lying states, there is usu-
ally no need extend the number of primitive components
in order to study decay.

We also find two new solutions, called 1b and 2b, since
they are respectively similar to the 9 × 9 solutions 1 and
2. They have, however, no 9× 9 counterparts. Solution 2b
is displayed in Appendix A.

In all 13 × 13 solutions, three new, experimentally
undiscovered, physical states appear at masses beyond the
f2(2340). The dominant glueball component in solutions
2a and 2b is found in one of the three new high mass
states.

We note that because the number of nonets stable un-
der decay is expected to be finite due to pair creation in
QCD [34], the largest mass matrix that need to be anal-
ysed is finite.

7 Decays

In order to calculate the decay of a physical state to an
exclusive final state it is necessary to add the decay am-
plitudes of all its primitive components, weighted by their
valence content. This is demonstated in Appendix C.

The decay amplitudes of the primitive components will
be calculated in the 3P0 model, meaning that pair creation
is with vacuum quantum numbers and decays proceed via
a connected quark diagram. Unless otherwise noted, the
decays are calculated using the “relativistic” phase space
convention and parameters of [30]. Another convention is
“mock meson” phase space with the parameters of [35].
In the mass matrix analysis, specific quark model iden-
tifications were not assumed for the various components.
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However, to calculate the decays, the quark model content
indicated by the label of a component will be assumed.

The preceding mechanism whereby the physical glue-
ball decays via primitive meson components, which is
closely related to the primitive glueball decaying via in-
termediate primitive mesons [27], provides the first theo-
retical understanding of the scalar glueball decay pattern
found in lattice QCD [11].

When one combs the experimental data available on
isoscalar tensor mesons more massive than the f

′
2(1525),

there is very little robust quantitative information avail-
able that can directly be compared to theory. The most
restrictive datum appears to be the ratio of widths of
fJ(2220) to ππ and KK̄, which we shall analyse below.
Of the qualitative data available, the observation or non–
observation of various isoscalar tensor mesons in φφ is of
particular interest, as the φφ decay can arise for connected
decay only from the ss̄ components of states. We shall
not make exhaustive decay predictions, but restrict to the
cases mentioned in a genuine attempt to confront our pic-
ture with experiment. However, we first analyse the OZI
forbidden decay f

′
2(1525) → ππ which is zero in models

where the state has only one valence component.

7.1 f
′
2(1525) → ππ

For the 13 × 13 solutions 1a, 1b, 2a and 2b we find
Γ (f

′
2(1525) → ππ) = 1.6(1.4), 1.2(1.1), 1.0 (0.9), 0.7(0.7)

MeV, with relativistic phase space6 listed first. Solution
2b is in best agreement with the experimental value 0.60±
0.12 MeV. The two 9 × 9 solutions gives the same results
as their 13 × 13 counterparts. As seen in (6),(9), the va-
lence content of the f

′
2(1525) is such that its 1P and 2P

nn̄ components are in destructive interference (they have
opposite signs), which will result in the suppression of
the ππ decay mode of this state. Furthermore, for com-
ponents higher in mass than 2P, the valence content has
the same sign as the 2P component, leading to further
suppression. To be specific, we illustrate this for solution
2b. Γ (f

′
2(1525) → ππ) = 14 and 4 MeV if only 1P, and

1P and 2P components are included. The width remains
above 1.5 MeV as long as not all of the 1P, 2P, 1F and 3P
components are included.

We have thus provided the first quantitative under-
standing of the process f

′
2(1525) → ππ. This demonstrates

that the techniques of both the mass matrix and 3P0 de-
cay analysis yield predictions consistent with experiment,
motivating their continued use. Remarkably, the decay
f

′
2(1525) → ππ can only be understood when at least

four different components of f
′
2(1525) are included. It is

also apparent that there is no need to postulate a non–
connected decay mechanism, whereby primitive ss̄ com-
ponents would directly decay to ππ. Because f

′
2(1525) is

dominantly ss̄, such processes must be small indeed.
6 In accordance with [30] we use a slightly higher pair cre-

ation constant for low–mass states. For Γ (f2(1275) → ππ),
with f2(1275) purely 1P nn̄, this gives 160 MeV, in perfect
agreement the experimental 157 ± 4 MeV [1].

7.2 R ≡ Γ (fJ(2220) → π+π−)/Γ (fJ(2220) →
K+K−) (J = 2)

The main distinguishing characteristic of the fJ(2220) is
its remarkably narrow total width of 23+8

−7 MeV [1] for a
state that can decay via numerous decay modes [36]. Not
even the existence of f2(2220) is well–established [4] as the
narrow peak sit on a variety of empirical backgrounds, for
which there is no explanation [37], so that the peak might
be a statistical fluctuation. Moreover, broader states in
the same mass region have been reported: JETSET sees
an f2 at 2231 ± 2 MeV with a width of 70 ± 10 MeV [38].
An f2 at 2240 ± 40 MeV with a width of 170 ± 50 MeV
[14], and at 2210 ± 45 MeV with width 260 ± 45 [15] have
also been reported. It is possible to understand current
data on fJ(2220) if one does not take it to be narrow [37].
If the fJ(2220) is not narrow, none of the “indicators”
of its glueball nature can be sustained, for example its
non–observation in γγ collisions [4] simply follows from
its wideness, and its coupling to gluons in J/Ψ radiative
decay becomes compatible to conventional mesons if J = 2
[18].

As seen in (6),(9), the largest non–glue components of
the fJ(2220), 3P and 1F ss̄, are in destructive interference,
and remain so in the 13 × 13 solutions. This also tends to
be true for the largest nn̄ components in the 13 × 13 so-
lutions. One may think this will result in the suppression
of the decay modes of this state, making its total width
consistent with the tiny experimental value. Evaluating
the total width of fJ(2220), with J = 2, to ππ and KK̄,
for all the 13× 13 solutions, and phase space conventions,
we obtain 20 − 150 MeV. It is evident that the tiny to-
tal width can not be sustained in our model, and it likely
is to be a challenge to any model in which the physical
glueball has non–negligible mixing with mesons [36]. The
individual partial widths to ππ and KK̄ are also incon-
sistent with experimental bounds that assume a narrow
fJ(2220) [4].

It is often claimed that fJ(2220) has a flavour demo-
cratic decay pattern expected for a pure glueball [19],
whereby R = 1 without phase space included, and R = 1.7
with phase space included. However, näıve flavour fac-
tors give that a pure nn̄ and ss̄ state should have, with-
out phase space included, R = 4, 0 respectively. Thus a
mixture between nn̄ and ss̄ can also look flavour demo-
cratic. For the 13 × 13 solutions 1a, 1b, 2a and 2b we find
R = 0.6, 0.7, 0.4, 0.5 respectively, independent of phase
space conventions. The two 9 × 9 solutions gives the same
results as their 13 × 13 counterparts. Although these val-
ues of R do not represent flavour democratic decay, they
are all consistent with experiment [19], which possesses
large error bars. This is true for solutions 1a and 1b where
fJ(2220) is the physical glueball, and for the other solu-
tions.

When decays are to final S–wave mesons, i.e. π, η,K, ρ,
ω,K∗, η

′
or φ, one almost always finds that the decay am-

plitudes decrease sharply as the decaying component is
progressively radially excited . The same is true as the de-
caying component is orbitally excited. This has the con-
sequence that although a physical state may have a domi-
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Table 1. Decay widths to φφ in MeV for various solutions.
Relativistic phase space is used first, with mock meson phase
space in brackets. The two 9×9 solutions give almost identical
results to their 13 × 13 counterparts. f2(2010) is taken to have
a mass at the upper end of the experimental range [1]

13 × 13 f2(2010) f2(2150) fJ(2220) f2(2300) f2(2340)
solution
1a 3(3) 7(5) 17(12) 23(16) 7(4)
1b 3(2) 5(4) 12(9) 17(12) 8(5)
2a 18(15) 3(3) 0.6(0.5) 4(3) 9(6)
2b 12(11) 1.7(1.4) 0.7(0.5) 7(5) 2(2)

nantly excited component, its decay dominantly proceeds
through a lower excited component. This means that näıve
quark model calculations that assign a single component
to an excited state [30,35] might be completely unreli-
able. One would a priori expect this situation to be worst
in JPC sectors where low–lying glueballs are present, i.e.
JPC = 0++, 2++ and 0−+ [3]. We illustrate the phe-
nomenon by analysing fJ(2220) → ππ and KK̄ for the
13 × 13 solutions. Although fJ(2220) is never dominantly
1P, this contribution is always one of the dominant ones.
One tends to finds that half of the width can be found by
including only the 1P and 2P contributions, even though
the state may be dominantly 1F and 3P.

7.3 Decays to φφ

We shall analyse the decay of various resonances to φφ,
in an attempt to understand the data, which claim that
f2(2010), f2(2300) and f2(2340) have been seen in φφ in
πp collisions [1]. There is also preliminary evidence for an
f2 at ∼ 2231 ± 2 MeV in φφ [38]. We bear in mind that
the production process can alter conclusions made based
on studying decays.

The results are in Table 1. From phase space consid-
erations, it is especially surprising that it is possible for
f2(2150) to have a smaller width to φφ than f2(2010). This
is even more surprising, given that f2(2010) is dominantly
nn̄ and f2(2150) is dominantly 1F ss̄. The resolution of
the paradox is that 1F and 2F does not decay to φφ in
the dominant S–wave in the 3P0 model [30]. We note that
solutions 2a and 2b are consistent with states unambigu-
ously observed in φφ.

8 Salient features

We showed that Schwinger–type mass formulae can be ob-
tained when we restrict to glueball– (hybrid) meson mix-
ing. With some physical isovector and isoscalar masses
known, these formulae can predict unknown masses and
couplings. The utility of this new analysis technique was
demonstrated in the tensor sector.

It has been shown that in order to understand the de-
cay f ′

2(1525) → ππ, one has to consider more than the 1P

nn̄ component. This implies that the use of a 2×2 mixing
formula where the physical states are linear combinations
of nn̄ and ss̄ components can be inadequate.

In our approach the physical glueball is a priori nar-
rower than mesons due to the large glueball component,
which is taken not to decay. However, as shown for the
fJ(2220), the physical glueball is not unusually narrow,
because of the presence of significant meson components,
contrary to the perturbative QCD claim that glueball mix-
ing with 1F mesons is tiny [26]. Also, there is no reason to
expect a flavour democratic decay pattern for the physical
glueball. It is a common myth that glueballs are narrow
and decay flavour democratically. Experimentally, this is
already clear for the scalar glueball [4,11]. These notions
arise from perturbative QCD, which, paradoxically, has
been argued to be valid for the tensor glueball but not for
the scalar glueball [39]. However, glueballs beyond 3 GeV
can be narrow [34]. A more reliable glueball signature may
be glue–rich production.
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et al.; E. Križnič, Proc. of XXVII Int. Conf. of High En-
ergy Physics (ICHEP’94) (1994, Glasgow, U.K.) p. 1413,
eds. P. Bussey, I. Knowles (IOP, London, 1995).

8. S.R. Hou (L3 Collab.) Proc. of 7th Int. Conf. on Hadron
Spectroscopy (HADRON’97) (Aug. 1997, Upton, NY) p.
745, eds. S.-U. Chung, H.J. Willutzki, AIP conference pro-
ceedings 432 (AIP, New York, 1998).

9. S. Godfrey, N. Isgur, Phys. Rev. D32 (1985) 189.
10. L. Burakovsky, T. Goldman, P.R. Page, hep-ph/9812395.
11. L. Burakovsky, P.R. Page, Phys. Rev. D59 (1999) 014022;

Erratum ibid. D59 (1999) 079902; and references therein.
12. J.H. Lee et al. (E818 Collab.) Phys. Lett. B323 (1994)

227.
13. D.V. Amelin et al. (VES Collab.) Phys. Lett. B356 (1995)

595; A.M. Zaitsev, Proc. of ICHEP’94, p. 1409 [7].
14. A.V. Anisovich et al., “Study of pp̄ → π0π0η from 600

to 1940 MeV/c”, submitted to Phys. Lett. B (1999); B.-
S. Zou, Proc. of Low Energy Antiproton Physics Con-
ference (LEAP’98) (Sep. 1998, Villasimius, Italy) hep-
ex/9812007.

15. A.V. Sarantsev, D.V. Bugg, “I=0 qq̄ resonances from 1.9
to 2.4 GeV”; “I=1 qq̄ resonances in the mass range 2.0−2.4



496 L. Burakovsky, P. R. Page: Tensor glueball–meson mixing phenomenology

GeV”, Proc. of Workshop on Hadron Spectroscopy (March
1999, Frascati, Italy).

16. T. Akesson et al., Nucl. Phys. B264 (1986) 154.
17. D. Barberis et al. (WA102 Collab.) hep-ex/9903042; hep-

ex/9903043.
18. F.E. Close, G. Farrar, Z.-P. Li, Phys. Rev. D55 (1997)

5749; F.E. Close, Nucl. Phys. Proc. Suppl. 56A (1997)
248.

19. J.Z. Bai (BES Collab.) Phys. Rev. Lett. 76 (1996) 3502;
X. Shen, Proc. of HADRON’97, p. 47 [8].

20. Yu.D. Prokoshkin (GAMS Collab.) Phys. Dokl. 40 (1995)
495.

21. A. Kirk (WA102 Collab.) Proc. of HADRON’97, p. 715
[8], hep-ex/9709024.

22. A.P. Szczepaniak, E.S. Swanson, C.-R. Ji, S.R. Cotanch,
Phys. Rev. Lett. 76 (1996) 2011.

23. W. Lee and D. Weingarten, hep-ph/9805029; Proc. of 6th

Int. Symp. on Lattice Field Theory (LATTICE’98) (July
1998, Boulder, CO) hep-lat/9811005.

24. D.V. Bugg, B.-S. Zou, Phys. Lett. B396 (1997) 295.
25. A. Breakstone et al., Z. Phys. C48 (1990) 569.
26. K.T. Chao, Commun. Theor. Phys. 27 (1997) 263.
27. J.F. Bolzan, W.F. Palmer, S.S. Pinsky, Phys. Rev. D15

(1977) 3460; Phys. Rev. D14 (1976) 3202; Phys. Rev.
D14 (1976) 1920; W.F. Palmer, S.S. Pinsky, Phys. Rev.
D22 (1980) 223; Phys. Rev. D14 (1976) 1916; J.F.
Bolzan, K.A. Geer, W.F. Palmer, S.S. Pinsky, Phys. Lett.
B59 (1975) 351; Phys. Rev. Lett. 35 (1975) 419.

28. N. Isgur, P. Geiger, Phys. Rev. D47 (1993) 5050; N. Is-
gur, Proc. of 25th INS Int. Symposium on Nuclear and
Particle Physics with High–Intensity Proton Accelerators
(Dec. 1996, Tokyo, Japan) JLAB-THY-97-14.

29. N.A. Törnqvist, Phys. Rev. Lett. 67 (1991) 556; C.B.
Dover, T. Gutsche, A. Faessler, Phys. Rev. C43 (1991)
379.

30. T. Barnes, F.E. Close, P.R. Page, E.S. Swanson, Phys.
Rev. D55 (1997) 4157.

31. K. Dooley, E.S. Swanson, T. Barnes, Phys. Lett. B275
(1992) 478.

32. J.Z. Bai et al. (BES Collab.) Phys. Rev. Lett. 77 (1996)
3959; Y.C. Zhu, Proc. of Intersections between Particle
and Nuclear Physics (May 1997, Big Sky, Montana) p.
476, AIP conference proceedings 412, ed. T.W. Donnelly
(AIP, New York, 1997).

33. A.V. Anisovich et al., “Observation of f0(1770) → ηη”;
D.V. Bugg et al., Phys. Lett. B353 (1995) 378; W. Dun-
woodie, SLAC-PUB-7163; Proc. of HADRON ’97, p. 753
[8]; G. Carlino (L3 Collab.) Proc. of XVth Particle and
Nuclei Int. Conf. (PANIC’99) (June 1999, Uppsala, Swe-
den).

34. M.M. Brisudova, L. Burakovsky, T. Goldman, hep-
ph/9810296.

35. R. Kokoski, N. Isgur, Phys. Rev. D 35 (1987) 907.
36. H.G. Blundell, S. Godfrey, Phys. Rev. D53 (1996) 3700.
37. E. Klempt, Proc. of HADRON’97, p. 867 [8].
38. A. Palano, Proc. of Workshop on Hadron Spectroscopy

[15].
39. J. Cao, T. Huang, H.-F. Wu, Phys. Rev. D57 (1998) 4154.
40. Yu. S. Kalashnikova, Yu. B. Yufryakov, Phys. Atom. Nucl.

60 (1997) 307; Phys. Lett. B359 (1995) 175; Yu. S.
Kalashnikova, Phys. Atom. Nucl. 59 (1996) 1303; Proc. of
Int. Conf. on Hadron Spectroscopy (HADRON’95) (July
1995, Manchester, U.K.) p. 533, eds. M.C. Birse et al.
(World Scientific, Singapore, 1996) hep-ph/9509340.

41. T. Manke, I.T. Drummond, R.R. Horgan, H.P. Shanahan,
Phys. Rev. D57 (1998) 3829.



L. Burakovsky, P. R. Page: Tensor glueball–meson mixing phenomenology 497

A Appendix: 13 × 13 mass matrix

The 13 × 13 mass matrix for solution 2b is


2.25 0.08 0.08
√

2 0.08 0.08
√

2 0.13 0.13
√

2 0.14 0.14
√

2 0.08 0.08
√

2 0.12 0.12
√

2
0.08 2.55 0 0 0 0 0 0 0 0 0 0 0

0.08
√

2 0 2.35 0 0 0 0 0 0 0 0 0 0
0.08 0 0 2.5 0 0 0 0 0 0 0 0 0

0.08
√

2 0 0 0 2.3 0 0 0 0 0 0 0 0
0.13 0 0 0 0 2.27 0 0 0 0 0 0 0

0.13
√

2 0 0 0 0 0 2.05 0 0 0 0 0 0
0.14 0 0 0 0 0 0 2.15 0 0 0 0 0

0.14
√

2 0 0 0 0 0 0 0 1.94 0 0 0 0
0.08 0 0 0 0 0 0 0 0 1.95 0 0 0

0.08
√

2 0 0 0 0 0 0 0 0 0 1.66 0 0
0.12 0 0 0 0 0 0 0 0 0 0 1.55 0

0.12
√

2 0 0 0 0 0 0 0 0 0 0 0 1.318




. (A.1)

The physical masses are

2.67, 2.53, 2.47, 2.34, 2.29, 2.23, 2.12, 2.01, 1.95, 1.81, 1.64, 1.52, 1.28, (A.2)

and the valence content of the physical states is


0.65 0.45 0.23 0.32 0.20 0.21 0.19 0.18 0.18 0.07 0.07 0.07 0.08
0.19 −0.84 0.12 0.46 0.09 0.09 0.07 0.07 0.06 0.02 0.02 0.02 0.03
0.27 −0.29 0.25 −0.82 0.18 0.18 0.12 0.12 0.10 0.04 0.04 0.04 0.04
0.11 −0.04 −0.88 −0.05 0.37 0.23 0.07 0.09 0.06 0.02 0.02 0.02 0.02
0.08 −0.02 −0.15 −0.03 −0.79 0.57 0.06 0.08 0.05 0.02 0.01 0.01 0.01
0.23 −0.06 −0.21 −0.07 −0.36 −0.69 0.24 0.43 0.16 0.07 0.05 0.04 0.04

−0.17 0.03 0.08 0.04 0.11 0.15 −0.44 0.83 −0.19 −0.08 −0.04 −0.04 −0.04
−0.18 0.03 0.06 0.03 0.07 0.09 0.74 0.17 −0.54 −0.26 −0.06 −0.05 −0.04
−0.02 0.00 0.00 0.00 0.00 0.01 0.03 0.01 −0.38 0.92 −0.01 −0.00 −0.00
−0.43 0.05 0.09 0.05 0.10 0.12 0.32 0.17 0.64 0.24 −0.33 −0.20 −0.15
−0.20 0.02 0.03 0.02 0.03 0.04 0.09 0.05 0.13 0.05 0.92 −0.28 −0.10
−0.22 0.02 0.03 0.02 0.03 0.04 0.08 0.05 0.10 0.04 0.18 0.93 −0.18
−0.23 0.01 0.02 0.01 0.03 0.03 0.05 0.04 0.07 0.03 0.07 0.10 0.96




. (A.3)

Solution 2b is similar to the 9 × 9 solution 2 in (7)-(9)
but is not the 13 × 13 counterpart of it, as evidenced by
the different couplings of the common primitive states and
the different primitive glueball mass.

We now study the stability of the solution under pa-
rameter changes. When we change the primitive 1F nn̄
and ss̄ masses upwards by 50 and 40 MeV respectively,
reflecting our lack of knowledge of these parameters, the
physical masses all remain consistent with experiment, ex-
cept for fJ(2220), which is 6 MeV higher than the ex-
perimental mean [1]. Valence contents of states far away
in mass from 1F remain essentially constant. The largest
changes are found for f2(2010), where valence contents
less than 0.2 change on average by 70%. The dominant
content changes by 1% and the next most dominant by

20%. A further change of the 2P ss̄ mass downwards by
30 MeV yields the largest changes for the valence content
of f2(1950), by similar amounts as before.

B Appendix: Motivation for mass matrix

If an appropriate basis is chosen, the hamiltonian for n
isovector states up to a certain mass can be taken to be a
diagonal n × n matrix N ≡ diag(N1, N2, . . . , Nn), where
the entries are real and positive. These entries are iden-
tified with the masses of the physical states in the ex-
perimental isovector spectrum. Note that no assumption
is made about the nature of the states, e.g. conventional
or hybrid meson or four–quark state. In a world of only
u, d quarks, this work assumes degeneracy of isovector and



498 L. Burakovsky, P. R. Page: Tensor glueball–meson mixing phenomenology

isoscalar states, motivated in [10]. The hamiltonian for the
isoscalar states is simply the (n+ 1) × (n+ 1) matrix(

G
√

2g√
2gT N

)
(B.4)

where a new state, which cannot exist in the isovector
sector, the glueball, has been added. G is the primitive
glueball mass, and g is a n–dimensional row of (real) cou-
plings of either uū or dd̄. These couplings are O( 1√

Nc
)

in the large number of colours Nc expansion of QCD. Of
course, any number of extra glueballs can in principle be
added [10].

If the strange quark is also incorporated, the isoscalar
matrix becomes (1). Here the matrix element between nn̄
states i and j (i 6= j) is zero because of the diagonality
of N in (B.4). The strange quark states are taken to be
heavier analogues of the light ones, so that the mixing
between ss̄ states i and j (i 6= j) is zero, and the diagonal
entries contain the masses Si of the strange quark states.
The remaining possible mixing is between nn̄ state i and
ss̄ state j, which is O( 1

Nc
) [11] and was found tiny in

recent lattice QCD simulations [23], and is neglected in
this work. The strange quark states are assumed to couple
in the same way to the glueball as uū and dd̄, which is
the SU(3) limit. For ground state isoscalar scalar mixing,
lattice QCD obtains the ratio of uū and dd̄ to ss̄ glueball
coupling to be 1.198 ± 0.072 [23], while the SU(3) limit is
1.

C Appendix: Decay formalism

The mass matrix in 1 can be viewed as forming part of
a hamiltonian H that describes an effective theory. This
part of the hamiltonian is diagonalized to yield the phys-
ical states. One can then a posteriori add to the hamilto-
nian a part that describes coupling to a decay channel.

H = g∗Gg +
n∑

i=1

(s∗
iSisi + n∗

iNini) + (
n∑

i=1

gig
∗(si +

√
2ni)

+c.c.) + (γgg∗ +
n∑

i=1

(γs
i s

∗
i + γn

i n
∗
i ))(BC) (C.5)

where G,Ni and Si are the masses and gi the couplings in
1; g, ni, si the corresponding primitive glueball, nn̄ and
ss̄ meson fields; and γg, γn

i , γ
s
i represent the couplings

of the respective primitive states to the decay channel
field (BC). Spin indices for the primitive tensor states
have been suppressed in H, e.g. g∗Gg stands for g∗

µνGg
µν ,

where gµν is a symmetric and traceless Lorentz tensor.
Now write the hamiltonian in shortened notation

H = m†Mm + m†γ(BC) m ≡ (g, s1, n1 . . . sn, nn)T

γ ≡ (γg, γs
1 , γ

n
1 . . . γ

s
n, γ

n
n)T (C.6)

where M is defined as the matrix (1). Since M is real
and symmetric it can be diagonalized by use of the (real)
orthogonal (Ω−1 = ΩT ) valence content matrix Ω, to
yield the diagonal mass matrix of (real) eigenvalues (phys-
ical masses) MD = ΩMΩ−1. The eigenvectors (physi-
cal states) are m̃ = Ωm, where m denotes the primitive
states. The jth row in Ω gives the valence content of the
jth physical state. Several practical examples of the di-
agonalization procedure can be found in this work. For
example, for the M in (4) MD is the matrix with diago-
nal entries (5) and Ω is (6).

The hamiltonian becomes

H = m̃†MDm̃ + m̃†Ωγ(BC) (C.7)

The first term was discussed in detail in [27]. The second
term shows clearly that in order to calculate the decay
amplitude of a physical state to (BC) it is necessary to
add the decay amplitudes of all its primitive components,
weighted by their valence content. This was used, but not
explicitly demonstrated in [27].


